Moderated Association of Momentary mindfulness and self-regulation with momentary affect and cognition: An Ecological Momentary Assessment (EMA) Study

Abhishek Aggarwal1,2, Shang-Ti, Chen3, PhD Jongwon Lee1, MPH, Allison Tracy, Shan Giao2, PhD, Xiaoming Li2, PhD, Chih-Hsiang Yang3, PhD

1. South Carolina SmartState Technology Center to Promote Healthy Lifestyles, University of South Carolina
2. Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina
3. Graduate Institute of Sports and Health, National Changhua University of Education, Taiwan

Background

- Problem: College students witness multi-faceted stressors and are vulnerable to the onset of mental and behavioral health problems.
- Potential Strategies: Mindfulness and self-regulation have demonstrated beneficial effects in promoting mental health.
- Literature Gap: The existing studies mostly applied cross-sectional surveys or pre-post intervention design to study the role of mindfulness and self-regulation.
- Study Aim: This study uses Ecological Momentary Assessment (EMA) to test temporal associations of mindfulness and self-regulation levels with emotional and cognitive outcomes within college students’ natural environments.

Methods

- Data was collected using Expiwell from 44 college students (Mean age=20.5, SD=1.38) during Fall 2021 semester, 6 random times per day for 7 consecutive days.
- Prompts were sent every 2 hours in the participants’ self-selected time window (for e.g., BAM-SBM), and randomly at any time within every 2-hour window.
- Participants had 20 minutes to complete 18 survey items after the prompt was delivered, and a reminder was sent after 5 minutes from the first prompt.

Expiwell data-collection process

Three Multi-level Models in R

Level-1:
Negative Affect/Positive Affect/Perceived Cognition = \(\beta_0 + \beta_1 (\text{Time of the Day}) + \beta_2 (\text{Weekend}) + \beta_3 (\text{Day of Week}) + \beta_4 (\text{Energy Expenditure}) + \beta_5 (\text{Location}) + \beta_6 (\text{Social Engagement}) + \beta_7 (\text{Momentary Autonomy}) + \beta_8 (\text{Momentary Self-regulation}) + \beta_{9i} (\text{Momentary Mindfulness}) + \beta_{10i} (\text{Momentary Self-regulation} \times \text{Momentary Mindfulness} \times \text{Intercept variance}) + e_{ij} \)

Level-2
\(\beta_{0i} = \gamma_{00} + \gamma_{01} (\text{Age}) + \gamma_{02} (\text{BMI}) + \gamma_{03} (\text{Gender}) + \gamma_{04} (\text{On-campus}) + \gamma_{05} (\text{Race}) + \gamma_{06} (\text{Major}) + \gamma_{07} (\text{Usual Self-regulation}) + \gamma_{08} (\text{Usual Mindfulness}) + \gamma_{09} (\text{Usual Autonomy}) + u_{0i} \)
\(\beta_{11,7,10i} = \gamma_{1-7,10} + u_{11,7,10i} \)
\(\beta_{8,9i} = \gamma_{8,9} + u_{8,9i} \)

Results

<table>
<thead>
<tr>
<th>N=1104 EMA Observations</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perceived Cognition</td>
<td>Positive Affect</td>
<td>Negative Affect</td>
</tr>
<tr>
<td></td>
<td>Coefficient</td>
<td>SE</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Fixed Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usual mindfulness</td>
<td>1.205***</td>
<td>.293</td>
<td>- .30</td>
</tr>
<tr>
<td>Momentary mindfulness</td>
<td>.521***</td>
<td>.06</td>
<td>.211***</td>
</tr>
<tr>
<td>Usual self-regulation</td>
<td>-.351</td>
<td>.296</td>
<td>.54</td>
</tr>
<tr>
<td>Momentary self-regulation</td>
<td>.206***</td>
<td>.048</td>
<td>.078**</td>
</tr>
<tr>
<td>Momentary mindfulness x self-regulation</td>
<td>.01</td>
<td>.031</td>
<td>-.047</td>
</tr>
<tr>
<td>Random Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept variance</td>
<td>.039</td>
<td>.150</td>
<td>.134</td>
</tr>
<tr>
<td>Residual variance</td>
<td>.147</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This model was controlled for Age, BMI, Gender, On-campus or Off-campus, Stay, Race, Major, Day of week, Weekend, Time of the day, Energy Expenditure, Outdoor or Indoor Location, Alone or with someone, and Momentary and Usual Autonomy. * p<.05, ** p<.01, *** p<.001, *p<.1

Interpretations:
- Higher levels of momentary mindfulness and self-regulation were associated with higher levels of momentary perceived cognition and positive affect and lower levels of momentary negative affect.
- At any moments when students had both lower mindfulness state and self-regulation than their usual levels, they reported the highest negative affect (see interaction plot on the right).

Conclusion and Discussion

- Our EMA study revealed the time-sensitive associations that students’ momentary affect and cognition were each predicted by their momentary mindfulness and self-regulation levels.
 ✓ Positive affect and perceived cognition can be improved by targeting momentary mindfulness or/and self-regulation.
 ✓ Negative affect can be decreased significantly by target momentary mindfulness and self-regulation simultaneously.
- To improve momentary positive affect and cognition, health interventions may need to target more frequent practice of mindfulness and/or self-regulations skills in students’ typical day-to-day life.
- To decrease negative affect, health interventions may need to target more frequent practice of mindfulness and self-regulation skills simultaneously in students’ typical day-to-day life to relatively attain more benefits.
- For example, brief mindfulness and self-regulation practices can be integrated in classroom settings before the lecture to promote better momentary cognition and well-being.
- Future studies can test the mediating role of self-regulation between mindfulness and positive affect/cognitive outcome across diverse populations, while accounting for different cultural factors.

Accoutrement:
This study is supported by the USC TecHealth Center Emerging Scholar Program

Contact for more info: Abhishek Aggarwal aggarwa@email.sc.edu